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The classical Gaussian ensembles of random matrices can be constructed by maximizing Boltzmann-Gibbs-
Shannon’s entropy,SBGS=−edHfPsHdglnfPsHdg, with suitable constraints. Here, we construct and analyze
random-matrix ensembles arising from the generalized entropySq=h1−edHfPsHdgqj / sq−1d (thus,S1=SBGS).
The resulting ensembles are characterized by a parameterq measuring the degree of nonextensivity of the
entropic form. Makingq→1 recovers the Gaussian ensembles. IfqÞ1, the joint probability distributionsPsHd
cannot be factorized, i.e., the matrix elements ofH are correlated. In the limit of large matrices two different
regimes are observed. Whenq,1, PsHd has compact support, and the fluctuations tend asymptotically to those
of the Gaussian ensembles. Anomalies appear forq.1: BothPsHd and the marginal distributionsPsHij d show
power-law tails. Numerical analyses reveal that the nearest-neighbor spacing distribution is also long-tailed
(not Wigner-Dyson) and, after proper scaling, very close to the result for the 232 case — a generalization of
Wigner’s surmise. We discuss connections of these “nonextensive” ensembles with other non-Gaussian ones,
such as the so-called Lévy ensembles and those arising from soft confinement.
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I. INTRODUCTION

The Gaussian ensembles of random matrix theory provide
the standard statistical description of spectral fluctuations in
a multiplicity of quantum systems ranging from nuclei to
disordered mesoscopic conductors and classically chaotic
systems[1–5].

Gaussian ensembles can be obtained from two postulates:
the invariance of the joint distribution probabilityPsHd with
respect to changes of bases and the statistical independence
of matrix elements. An alternative and more appealing way
of constructing random matrix ensembles uses a maximum
entropy principle[1,6]. One constraint is normalization

E dH PsHd = 1. s1d

The other one has the purpose of confining the spectrum, but
is otherwise arbitrary(as long as the integral converges)

E dH PsHdtr VsHd = 1 s2d

(the trace ensures rotational invariance). For instance, the
Gaussian ensemble of real symmetric matrices is obtained by
the simplest choice

VsHd = H2. s3d

It has been proven that, in the limit of large matrices, and for
a strong enough confining potentialV, local fluctuation prop-
erties tend to those of the Gaussian case, whatever the shape
of V [7,8].

To escape from Gaussian universality one must consider
soft-confinement potentials[9,10], or breaking rotational in-
variance. The latter case typically arises when matrix ele-
mentsHij are identically distributed and independent(non-
Gaussian) random variables. For instance, Cizeau and
Bouchaud constructed anomalous “Lévy ensembles” by
drawing Hij from a long-tailed distribution[11]. Further-
more, if one allows matrix elements to depend on the indices
i j , a huge variety of ensembles emerges, with a behavior
different from Gaussian, e.g., “banded matrices”[12].

The purpose of this paper is to present a new way of
constructing non-Gaussian ensembles while preserving rota-
tional invariance. The idea is to use a maximum entropy
approach with the usual constraints but with the nonexten-
sive entropy[13]
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SqfPsHdg =

1 −E dHfPsHdgq

q − 1
, s4d

whereq is a free, real parameter(q=1 recovers Shannon’s
standard entropy). This scheme produces a variety of en-
sembles, withq controlling the degree of confinement. Some
ensembles belong to the Gaussian universality class but oth-
ers exhibit anomalous behavior, characterized by distribu-
tions having power-law tails.

The explicit construction of theseq ensembles is pre-
sented in Sec. II, where we also derive expressions for mar-
ginal distributions and the joint density of eigenvalues. Re-
markably, for large matrices, theq ensembles can be
represented as a superposition of Gaussian ensembles. This
allows us to obtain closed analytical formulas for the eigen-
value density, level-spacing probability distributions, etc.
(Sec. III). The comparison of analytical results with numeri-
cal simulations is the subject of Sec. IV. We present in Sec. V
the concluding remarks.

II. THE GENERALIZED ENSEMBLES

For simplicity we restrict our analysis to ensembles of
real and symmetric matricesH — extensions are straightfor-
ward. The volume element in this space is

dH = p
i=1

N

dHiip
i, j

N

dHij , s5d

where it is understood that matrices are of sizeN3N. Gen-
eralized ensembles are obtained by maximizing the entropy
of Eq. (4) subjected to normalization, Eq.(1), and

E dH tr H2fPsHdgq

E dHfPsHdgq

= s2, s6d

with s a constant having units of energy(we are assuming
that of H is a Hamiltonian). Equation(6) is the generaliza-
tion of the usual constraint that leads to the Gaussian en-
sembles in the standard maximum entropy approach. Argu-
ments justifying the use of the escort probabilitiesPq, and
applications of this generalized maximum entropy scheme to
various problems, can be found in Ref.[13].

Using the Lagrange multiplier technique, it is straightfor-
ward to find the distribution of maximum entropy

PsHd ~ expqs− l tr H2d, s7d

where we have defined theq-exponential function[13]

expqsxd ; hf1 + s1 − qdxg+j1/s1−qd, s8d

with

¯+ = maxh¯,0j s9d

[note that exp1sxd=expsxd]. The omitted normalization con-
stant in(7) and the parameterl can be determined from the

constraints(1) and(6). (Some preliminary results along these
lines have been obtained by Evans and Michael[14].)

The ensemble defined by Eq.(7) will be called the
“q-orthogonal ensemble”(qOE), as it can be seen in(7) that
the probability distribution depends only on trH2, an or-
thogonal invariant. Whenq→1 the q-exponential function
tends to the usual exponential, and one recovers the Gaussian
orthogonal ensemble(GOE). Except for theq=1 case, theq
exponential in(7) cannot be factorized into a product of
(marginal) distributions for individual matrix elementsHij ,
which are then correlated. We can already verify that the
casesq,1 and q.1 are qualitatively different. Equations
(8) and (9) show that forq,1 the distributions have com-
pact support; ifq.1, there are always power-law tails(we
are assumingl.0; see below).

To proceed with the analysis of qOE it will be convenient
to think of matricesH as points in ad-dimensional Euclidean
space[1,16,17]. The firstN components of a pointr corre-
spond to diagonal elementsHii , the last ones to the upper
triangleHij , i , j

r = sH11, . . . ,HNN,Î2H12, . . . ,Î2HN−1,Nd. s10d

The dimension of this space equals the number of indepen-
dent matrix elements ofH, i.e.,

d =
NsN + 1d

2
. s11d

The scaling ofHij by Î2 makes the probability distribution
(7) spherically symmetric inRd, i.e., PqOEsr d is the product
of a uniform distribution in the angles, and a radial distribu-
tion [15]

Psr ;q,s,Nd ~ rd−1 expqs− lr2d, s12d

where

r2 ; r · r = tr H2. s13d

The observations above imply that qOE belongs to the wider
category of “spherical ensembles” recently studied by Le
Caër and Delannay[16,17].

For q.1, the distribution(12) has a power-law tail which
scales as 1/r s1+md with

m =
2

q − 1
− d. s14d

Then, the normalization condition cannot be satisfied for all
values ofq, but only by those makingm.0, i.e.,

− ` , q , 1 +
2

d
. s15d

(Note the formal similarity between this problem and the
generalized random walker ind dimensions[18].)

The Lagrange multiplierl is given by
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l =
1

s2

d

2 − dsq − 1d
. s16d

Inside the region(15) (i.e., normalizability) l is always posi-
tive.

Integrating Eq.(7) over all variables but one, we obtain
the marginal distributions for diagonal and off-diagonal ma-
trix elements[19]

PsHiid ~ expq8s− l8Hii
2d, s17d

PsHijd ~ expq8s− 2l8Hij
2d, s18d

where

q8 =
2 − sd − 3dsq − 1d
2 − sd − 1dsq − 1d

, s19d

and

l8 =
d

2s2

2 − sd − 1dsq − 1d
2 − dsq − 1d

. s20d

The following properties can be easily verified. The param-
eterq8 is an increasing function ofq, and around the critical
valueq=1 one has

q8 = q + O„sq − 1d2
…. s21d

In addition,l8 is always positive. Then, in parallel with the
global PsHd, the marginal distributions also decay as power
laws or have compact support, depending onq being larger
or smaller than 1, respectively. We remark that the matrix
elements are not independent, soPsHd cannot be recon-
structed from the marginal probabilities(17) and (18).

The joint density of eigenvalues can be obtained in a
straightforward way[4,14]

Ps«1, . . . ,«Nd ~ p
i, j=1

N

u« j − «iuexpq S− lo
i=1

N

«i
2D . s22d

The part that is responsible for level repulsion is identical to
that in GOE because it arises only from orthogonal symme-
try. The difference is in the confinement term, which in the
present case is a nonseparableq exponential. Thus, the “po-
tential” that confines the spectrum is not a single-particle
quadratic well, as in GOE. It is rather a mean field, propor-
tional to the moment of inertiao«i

2.
We can get a clear view of the generalized ensembles by

noting that these are connected to the so-called fixed-trace
ensembles(FTE) and, for largeN, to the Gaussian en-
sembles. In fact, recall that FTE are defined by[1,16,17,20]

PFTEsH ;r,Nd ~ dstr H2 − r2d. s23d

Let fsHd be an arbitrary function and consider the averages
in both ensembles qOE and FTE, namely

kfsHdlqOEsq,s,Nd =E dH PqOEsH ;q,s,NdfsHd, s24d

and

kfsHdlFTEsr,Nd E dH PFTEsH ;r,NdfsHd. s25d

Then, we have the relation

kfsHdlqOEsq,s,Nd

=E
0

`

dr Psr ;q,s,NdkfsHdlFTEsr,Nd. s26d

The average over qOE can be calculated in two stages. First,
do the average over the angles, for a fixed radiusr. This
corresponds to an FTE average. Then, average over radii,
with the weighting functionPsrd. Of course, the same is true
for the GOE, which corresponds to the particular caseq=1.
The relationship between qOE(or GOE) and FTE is analo-
gous to that between the canonical and microcanonical en-
sembles of statistical mechanics.

Equation(26) involves no approximations. Although ex-
act, it is not very useful because it requires the knowledge of
fixed-trace averages. However, if one is interested in the
limit of large matrices, important simplifications can be
made.

III. THE LARGE- N LIMIT

The key point is that, forN large enough, the FTE average
in the right-hand side of(26) can be approximated by an
average in a GOE having the propertyktr H2l=r2. Then, if
we know the GOE average of a given function, its corre-
sponding qOE average can in principle be calculated by do-
ing just one integration. We will analyze in detail two spec-
tral statistics: the eigenvalue density

rs«;q,s,Nd =Ko
i=1

N

ds« − «idL , s27d

and the distribution of level spacings

pss;q,s,Nd = kds«i+1 − «i − sdl. s28d

In the last equation,«i and «i+1 are two consecutive eigen-
values lying at the center of the band, i.e.,«i <0 [29]. It is
(or will become) clear that other statistics, e.g., two-point
correlation functions, can also be considered along the same
lines.

In order to obtain the qOE averages of(27) and (28), we
need the corresponding FTE expressions to be further aver-
aged withPsr ;q,s ,Nd, as indicated by Eq.(26). However,
we will approximate FTE averages by the corresponding
GOE ones. Then, the basic ingredients become the “semi-
circle law” (for the eigenvalue density)

rs«;N,rd =
N2

2pr2Î4r2

N
− «2, s29d

and Wigner’s surmise
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pss;N,rd =
N3s

2pr2 expS−
N3s2

4pr2D , s30d

giving the level-spacing distribution. Equations(29) and(30)
are good approximations for both GOE and FTE distribu-
tions whenN is large[16].

We recall that ifq.1, the normalization condition(15)
limits the value ofN to a finite domain. On the other hand,
the caseq,1 does not present such a problem. So, we ana-
lyze each case separately.

A. Ensembles withq,1

Except for providing an energy scale,s plays no special
role. From now on, without loss of generality, we sets=1. If
desired,s can be restored at any time by dimensional analy-
sis.

WhenN→` (q fixed) the radial distribution of qOE tends
to

Psr ;q,Nd ~ rd−1f1 − r2g1/s1−qd, s31d

limited to the domain 0ø r ø1. As d grows, the distribution
is squeezed againstr =1, being concentrated in a small re-
gion belowr =1, of width Os1/dd=Os1/N2d. It can be veri-
fied that both the level density(29) and the spacing distribu-
tion (30), when considered as functions ofr, have widths
which areOs1d. Thus, the radial distribution is much nar-
rower and we can safely approximate

Psr ;q , 1,N → `d . dsr − 1d. s32d

We conclude that, whenq,1 and N→`, the ensembles
qOE tend to the GOE[as far as it concerns the distributions
being studied, namely Eqs.(27) and (28)].

B. Ensembles withq.1

Whenq.1 the possible ensembles are restricted to a re-
gion in the planeq–N that gets thinner asN→` (see Fig. 1).

The natural coordinates in this region areN (or d) andm [see
Eq. (14)], the latter controlling the tails ofPsrd and other
distributions. For instance, substituting(14) and (16) into
(17) or (18), one immediately verifies that the marginal dis-
tributions behave asymptotically as

PsHijd ,
1

Hij
1+m . s33d

The radial distribution(12), as a function ofr ,m ,N, becomes

Psr,m,Nd ~ rd−1F1 +
d

m
r2G−sd+md/2

. s34d

This expression allows the identification of some well-
known ensembles as special members of the qOE class: the
Cauchy-Lorentz ensemble corresponds tom=1. An integer
m.1 produces Student’s ensembles(see Refs.[16,17] and
references therein; see also Ref.[22]).

Now, we analyze the limitN→` while keepingm.0
fixed, i.e., we move upwards along the curves of Fig. 1. As in
the caseq,1, examined before, there is a limiting distribu-
tion. Some simple algebra leads to

Psr,m,N → `d ~ r−s1+mdexpS−
m

2r2D . s35d

Only when m→`, P tends to the delta function(32), and
GOE is recovered. For finitem the width ofPsrd is at least
Os1d. In any case, the average of a given GOE distribution
with Psrd gives the corresponding qOE distribution[via Eq.
(26) with kfsHdlFTE,kfsHdlGOE, when N→`]. Let us first
consider the density of states. Inserting Eqs.(29) and (35)
into (26), we obtain

rs«;md ~ E
ÎN«/2

`

dr
Î4r2 − N«2

rm+3 expS−
m

2r2D . s36d

This integral cannot be expressed in terms of elementary
functions. However, some information can be extracted ana-
lytically. Setting«=0 one obtains the qOE density of states
at the center of the band

rs0;md =
N3/2

p

Gfsm + 1d/2g
Gfm/2g

Î 2

m
. s37d

The behavior for large« can be easily recognized by making
the change of variables 2r =ÎN«z in (36), which leads to

rs«;md ~ «−s1+mdE
1

`

dz
Îz2 − 1

zm+3 expS−
2m

Nz2«2D . s38d

Evidently the tails vanish as«−s1+md. This is also the behavior
observed by Cizeau and Bouchaud in their “Lévy en-
sembles” of matrices having independent entries distributed
according to the same law of Eq.(33) [11]. We note, how-
ever, that the analogies cannot be pushed further because our
ensembles are rotationally invariant and Lévy ensembles are
not (the ensembles of Ref.[11] belong to the so-called
a-symmetric class[16]; see also Ref.[23]).

FIG. 1. Whenq.1 the ensembles qOE lie in the region limited
by the axes and the curvem=0 (normalization frontier). As N be-
comes large, the maximumq allowed tends to 1. Lines correspond
to families of ensembles having the same power-law tails(labeled
by m).
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The calculation of the spacing distribution proceeds as
before. We have to insert Eqs.(30) and (35) into (26). The
result is

pss;md ~ sE
0

`

dr r−sm+3d expF−
m

2r2S1 +
N3s2

2pm
DG .

s39d

The dependence ons can be easily isolated by a change of
variables, so we can write

pss;md ~ sS1 +
N3s2

2pm
D−s1+m/2d

, s40d

or alternatively

pss;md ~ sexpqs
s− as2d, s41d

where

qs ;
m + 4

m + 2
and a ;

N3

4p

m + 2

m
. s42d

The function of Eq.(40) [or Eq.(41)] is identical in shape to
the exact level-spacing distribution of the 232 qOE having
the samem (see the Appendix). Then, both distributions can
be collapsed by a simple scaling of the arguments. This cu-
rious result constitutes a generalization of Wigner’s surmise
to qOE.

Remark.When analyzing spectral statistics it is usual to
normalize energies so that the(local) average spacing is 1
(the spectrum is “unfolded”). This amounts to measuring en-
ergies in units of

D ; E
0

`

ds spssd. s43d

Note, however, that in qOE the first moment ofpssd does not
exist for mø1. In these cases, instead ofD, one may alter-
natively use the energy scale

D̃ ; FE
0

`

ds s−1pssdG−1

. s44d

Due to level repulsion there is no singularity ats=0, andD̃
always exists, thus representing a characteristic energy of
qOE. It is close to the inverse of the level density at«=0

D̃ =
2

prs0;md
, s45d

with rs0;md given in (37).

IV. NUMERICAL RESULTS

When thought of as clouds inRd, via the map of Eq.(10),
both ensembles qOE and GOE are spherically symmetric.
This means that qOE can be constructed just by rescaling the
radii of all points in the GOE cloud[16,17]. Thus, the con-
struction of a qOE matrixH1 (with parametersq, s, N) can
be done in three steps.(i) Construct a GOE matrixH0 of size
N3N. In this case matrix elements are independent and can

be calculated using Eqs.(17) and(18) with q=1. The radius
of H0 is

r0 = Îtr H0
2. s46d

(ii ) Choose a radiusr1 randomly according to the radial prob-
ability distributionPsr1,q,s ,Nd of Eq. (12). (iii ) DefineH1

as

H1 = H0
r1

r0
. s47d

This is the recipe we followed for constructing qOE matri-
ces.(If, instead of being a random variable,r1 is fixed, we
obtain a matrix belonging to FTE.) The only difficulty is to
devise the random number generator, especially whenPsrd
has very long tails. For this purpose we used a combination
of the rejection methodand thetransformation method, as
explained in Ref.[24].

In Fig. 2 we show histograms representing densities of
states obtained from diagonalization of qOE matrices. It is
clear that they are very well described by the formula(38),
which was evaluated by direct numerical integration.

The statistics of level spacings is exhibited in Fig. 3. His-
tograms were obtained by binning data from 105 matrices.
Each matrix contributed, with the “central” spacing between
levels«N/2 and«N/2+1. The analytical curves are theq distri-
butions of Eq.(40). Again, the agreement between theory
and simulations is satisfactory. The values ofm were chosen
in accordance with the following criterion. Whenm=0.5 all
integer moments diverge. Form=1.5 sm=2.5d the first (sec-
ond) moment exists but higher ones diverge. The casem
=6.0 is intended to represent an ensemble qOE approaching
GOE.

FIG. 2. Density of states in the ensembles qOE(normalized to
1). We compare histograms generated numerically(dots) with the
theoretical result of Eq.(38) (curves). Each histogram was gener-
ated from a set of 105 matrices. We used the following values ofm:
0.5, 1.5, 2.5, 6.0,̀ . Densities with largerm’s have larger values at
«=0 and decay faster. In all casesN=40 ands=1. The dashed line
corresponds to the GOE semicirclesN→`d.
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V. CONCLUSIONS

This paper explores the possibility of using a modified
maximum entropy method to construct random matrix en-
sembles. Whereas the usual logarithmic entropy leads to en-
sembles characterized by exponential laws, the power-law
entropy of Eq.(4) naturally produces ensembles with long-
tailed distributions(e.g., the so-calledq Gaussians[13]).
These ensemblessqOEd recover the Cauchy-Lorentz and
Student’s ones for special choices of the parameters.

Of course, the same families of ensembles can also be
obtained from, say, the standard maximum entropy approach,
but at the expense of introducing a complicated constraint. A
similar situation arises in the maximum entropy approach to
anomalous diffusion, where one can choose between an un-
appealing constraint[25] and a nonextensive entropy
[18,21]. By sweeping the parameterq, one switches from
sub- to superdiffusive regimes,q=1 giving normal diffusion
[18,21].

In the present case, the entropic indexq controls the con-
finement, allowing access to different universality classes.
The anomalies we found can be associated with an effect of
soft- (or weak) confinement. However, the confining poten-
tial in qOE is many-body, as opposed to the more common
single-particle confinement in standard random matrix theo-
ries.

Gaussian ensembles areergodic [26]. In Sec. III we ex-

plicitly used the fact that individual large qOE matrices have
GOE statistics. This implies that qOE isnot ergodic(if m is
finite). In random matrix theory, nonergodicity is considered
to be a drawback because, it is argued, predictions(ensemble
averages) are compared with data obtained from a single
system. We do not object to this reasoning, but just mention
that in some cases empirical data are indeed extracted from
ensembles of Hamiltonians[27,28].
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APPENDIX: GENERALIZED WIGNER’S SURMISE

Here, we apply(26) to the level-spacing distribution in
qOE with N=2. We want to calculate

pss;q,sd ; kdfs«2 − «1dsHd − sglqOE, sA1d

where«1,«2 are the eigenvalues ofH. First, we needpss; rd
for FTE. This is a known result[17]

pss;rd =
s

Î2r

1
Î2r2 − s2

sA2d

(if the argument of the root is positive, zero otherwise). Ac-
cording to(26), pss;q,sd is obtained by averaging(A2) with
the radial weight of qOE, Eq.(12) with d=3. We show the
result for the caseq.1

pss;q,sd ~ sexpq9s− l9s2d, sA3d

where

q9 =
1 + q

3 − q
, sA4d

and

l9 =
3 − q

4s2s5/3 −qd
. sA5d

Equation(A3) plays the role of Wigner’s conjecture for qOE.
It is more useful to rewrite(A3) in terms of the parameterm
of Eq. (14). The result is

pss;q,sd ~ sS1 +
3s2

2m
D−s1+m/2d

. sA6d

In Sec. III this expression is compared with the spacing dis-
tribution for the large-N case[Eq. (40)].
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