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Random matrix ensembles from nonextensive entropy
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The classical Gaussian ensembles of random matrices can be constructed by maximizing Boltzmann-Gibbs-
Shannon’s entropySses=—J/dH[P(H)]In[P(H)], with suitable constraints. Here, we construct and analyze
random-matrix ensembles arising from the generalized entggpyl—[dH[P(H)]%}/(q-1) (thus,S;=Sggg)-

The resulting ensembles are characterized by a parametezasuring the degree of nonextensivity of the
entropic form. Makingy— 1 recovers the Gaussian ensembleg.#f1, the joint probability distribution®(H)

cannot be factorized, i.e., the matrix elementdHoéire correlated. In the limit of large matrices two different
regimes are observed. Whgr< 1, P(H) has compact support, and the fluctuations tend asymptotically to those

of the Gaussian ensembles. Anomalies appean Yoi.: Both P(H) and the marginal distributior3(H;;) show
power-law tails. Numerical analyses reveal that the nearest-neighbor spacing distribution is also long-tailed
(not Wigner-Dysom and, after proper scaling, very close to the result for the22case — a generalization of
Wigner’s surmise. We discuss connections of these “nonextensive” ensembles with other non-Gaussian ones,
such as the so-called Lévy ensembles and those arising from soft confinement.
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I. INTRODUCTION
JdH P(H)trvV(H)=1 (2
The Gaussian ensembles of random matrix theory provide
the standard statistical description of spectral fluctuations in . . . )
a multiplicity of quantum systems ranging from nuclei to (the trace ensures rotational invariancBor instance, _the
disordered mesoscopic conductors and classically chaotfg@ussian ensemble of real symmetric matrices is obtained by
systemg1-5]. the simplest choice
Gaussian ensembles can be obtained from two postulates:
the invariance of the joint distribution probabiliB(H) with
respect to changes of bases and the statistical independence
of matrix elements. An alternative and more appealing way
of constructing random matrix ensembles uses a maximurlt has been proven that, in the limit of large matrices, and for
entropy principle[1,6]. One constraint is normalization a strong enough confining potentid| local fluctuation prop-
erties tend to those of the Gaussian case, whatever the shape
of V [7,8].
To escape from Gaussian universality one must consider
JdH P(H)=1. (1) soﬁ-confinement potentia[sa,lq, or bre_aking rotational_in-
variance. The latter case typically arises when matrix ele-
mentsH;; are identically distributed and independénbn-
Gaussian random variables. For instance, Cizeau and
Bouchaud constructed anomalous “Lévy ensembles” by
Vfrawing H;; from a long-tailed distribution/11]. Further-
more, if one allows matrix elements to depend on the indices
ij, a huge variety of ensembles emerges, with a behavior
different from Gaussian, e.g., “banded matricgg2].

V(H) = H2. (3

The other one has the purpose of confining the spectrum, b
is otherwise arbitraryas long as the integral converges
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constraintg1) and(6). (Some preliminary results along these
1 ‘f dH[P(H)]? lines have been obtained by Evans and MicHa€].)
S[LPH)]= 1 , (4) The ensemble defined by Eq7) will be called the

“g-orthogonal ensemblgqOE), as it can be seen ifY) that

whereq is a free, real parametéq=1 recovers Shannon’s the probability distribution depends only onH#, an or-
standard entropy This scheme produces a variety of en-thogonal invariant. Whem— 1 the g-exponential function
sembles, withg controlling the degree of confinement. Some tends to the usual exponential, and one recovers the Gaussian
ensembles belong to the Gaussian universality class but otthogonal ensemblgSOE). Except for theq=1 case, the
ers exhibit anomalous behavior, characterized by distribuexponential in(7) cannotbe factorized into a product of
tions having power-law tails. (margina) distributions for individual matrix elements;;,
The explicit construction of thesg ensembles is pre- Which are then correlated. We can already verify that the
sented in Sec. Il, where we also derive expressions for magasesq<1 andq>1 are qualitatively different. Equations
ginal distributions and the joint density of eigenvalues. Re{8) and(9) show that forq<1 the distributions have com-
markably, for large matrices, the ensembles can be pact support; ifg>1, there are always power-law taiiee
represented as a superposition of Gaussian ensembles. TRI§ assuming. > 0; see below
allows us to obtain closed analytical formulas for the eigen- T0 proceed with the analysis of qOE it will be convenient
value density, level-spacing probability distributions, etc.to think of matricedH as points in al-dimensional Euclidean
(Sec. Il). The comparison of analytical results with numeri- sSpace[1,16,17. The firstN components of a point corre-
cal simulations is the subject of Sec. IV. We present in Sec. \spond to diagonal elements;, the last ones to the upper
the concluding remarks. triangle H;;, i <]

r= (Hll’ . ,HNN, V’2H12, e ,\,‘"ZHN_LN) . (10)
Il. THE GENERALIZED ENSEMBLES

. ) , The dimension of this space equals the number of indepen-
For simplicity we restrict our analysis to ensembles of yant matrix elements dfl . i.e.

real and symmetric matricé$ — extensions are straightfor-

ward. The volume element in this space is N(N + 1)
N N = 5 (11
dH =T dH; [T dHy, (5) _
i=1 i< The scaling ofH;; by V2 makes the probability distribution

where it is understood that matrices are of dize N. Gen-  (7) spherically symmetric iR, i.e., Pqoe(r) is the product
eralized ensembles are obtained by maximizing the entrop§f @ uniform distribution in the angles, and a radial distribu-

of Eq. (4) subjected to normalization, E¢L), and tion [13]
f dH tr HP(H)] P(r;0,0,N) 17 expy(= Ar), (12)
=0, ®)  where
de[P(H)]q
r=r.r=trH2. (13

with o a constant having units of energye are assuming
that of H is a Hamiltonian. Equation(6) is the generaliza- The observations above imply that qOE belongs to the wider
tion of the usual constraint that leads to the Gaussian ercategory of “spherical ensembles” recently studied by Le
sembles in the standard maximum entropy approach. Argucaér and Delannajl6,17.
ments justifying the use of the escort probabilitie§ and Forqg> 1, the distribution12) has a power-law tail which
applications of this generalized maximum entropy scheme tscales as If*** with
various problems, can be found in REL3].

Using the Lagrange multiplier technique, it is straightfor-

ward to find the distribution of maximum entropy M= q-1 -d. (14
P(H) < exp,(= \ tr H?), (7) o » L
Then, the normalization condition cannot be satisfied for all
where we have defined tleeexponential functiorf13] values ofg, but only by those making.>0, i.e.,
expy(x) = {[1+(1 - .}, (® )
with Tr=gq=1l+y (15
...+:ma){...'0} (9)

(Note the formal similarity between this problem and the
[note that exp(x)=expx)]. The omitted normalization con- generalized random walker ithdimensiong18].)
stant in(7) and the parametex can be determined from the The Lagrange multipliek is given by
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1 d
- (16 (F(H))erelrN) f dH PrreHin Nf(H).  (25)
Inside the regiori15) (i.e., normalizability \ is always posi- Then. we have the relation
tive. ,
Integrating Eq.(7) over all variables but one, we obtain (F(H))qoe@, o, N)
q 1 1

the marginal distributions for diagonal and off-diagonal ma-

trix elements[19] _ J dr P(r:q o N FH)ereFN). (26)

P(H;;) = expy (= \'HE), (17) 0
The average over qOE can be calculated in two stages. First,

P(H;j) = expy (- 2\'HY), (18)  do the average over the angles, for a fixed radiughis
corresponds to an FTE average. Then, average over radii,

where with the weighting functiorP(r). Of course, the same is true
. 2-(d-3)(q-1) for the GOE, which corresponds to the particular casd..
q' = 2-@-1@g-1’ (19 The relationship between qO@®r GOE) and FTE is analo-
gous to that between the canonical and microcanonical en-
and sembles of statistical mechanics.

Equation(26) involves no approximations. Although ex-
N = iw (20) act, it is not very useful because it requires the knowledge of
20° 2-d(q-1) fixed-trace averages. However, if one is interested in the

The following properties can be easily verified. The param—lrg'éec’f large matrices, important simplifications can be

eterq’ is an increasing function af, and around the critical
valueq=1 one has

q'=q+0((q-1)?). (21)
o . - : ; The key point is that, foN large enough, the FTE average

In addition,\’ is always positive. Then, in parallel with the . ; : ;
global P(H), the marginal distributions also decay as powerIn the right-hand side 0{26) can be approximated by an

4 . o .
laws or have compact support, dependinggobeing larger average in a GOE having the propetty H)=r*. Then, if

or smaller than 1, respectively. We remark that the matrix'€ kn_ow the GOE average of a given function, its corre-
elements are not independent, B¢H) cannot be recon- sponding qOE average can in principle be calculated by do-

structed from the marginal probabilities7) and (18). ing just one integration. We will analyze in detail two spec-

The joint density of eigenvalues can be obtained in atral statistics: the eigenvalue density
straightforward way4,14

lll. THE LARGE- N LIMIT

N

N
P(eq, ... ,en) H |8j - si|equ (— D £|2> (22
i=1

i<j=1

N
ple;q,0,N)={ X 8e—¢) ), (27)
i=1

. . L ) and the distribution of level spacings
The part that is responsible for level repulsion is identical to

that in GOE because it arises only from orthogonal symme- . -

. o . o S;0,0,N) =(d(ej+1— & —9)). 28
try. The difference is in the confinement term, which in the P(S: Q. N) = (eig ~ & = 9) (28)
present case is a nonseparatplexponential. Thus, the “po- In the last equations; and s, are two consecutive eigen-

tential” that confines the spectrum is not a singIe-particlevalues lying at the center of the band, i..<0 [29]. It is

q_uadratlc well, as in GO_E' lt_ IS gather a mean field, propor—(or will becomg clear that other statistics, e.g., two-point
tional to the moment of inertiae;".

. . correlation functions, can also be considered along the same
We can get a clear view of the generalized ensembles b

noting that these are connected to the so-called fixed-trace

ensembles(FTE) and, for largeN, to the Gaussian en- need the corres ; :
. ponding FTE expressions to be further aver-
sembles. In fact, recall that FTE are defined[hy16,17,20 aged withP(r:q,o,N), as indicated by Eq26). However,
Pere(H ;1 N) o 8(tr H2=r2), (23)  we will approximate FTE averages by the corresponding
GOE ones. Then, the basic ingredients become the “semi-
Let f(H) be an arbitrary function and consider the averagegircle law” (for the eigenvalue density
in both ensembles qOE and FTE, namely

In order to obtain the gOE averages(@%) and(28), we

N = N> far?
(f(H))qoe(@,0,N) = f dH PyoH;a,0,N)f(H), (24) PleND =2 5\ N~

(29)

and and Wigner’s surmise
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8 yp-—m -t The natural coordinates in this region &éor d) andu [see
Eqg. (14)], the latter controlling the tails oP(r) and other
distributions. For instance, substitutiri@4) and (16) into

- (17) or (18), one immediately verifies that the marginal dis-
tributions behave asymptotically as

- P(Hij) -~ (33)

Hi™
The radial distributior{12), as a function of , u,N, becomes
]—(dm)/z

(34)

d
P(r, u,N) = rd‘l[l +—r?
M

q This expression allows the identification of some well-
FIG. 1. Wheng> 1 the ensembles qOE lie in the region limited known ensembles as special members of the qO.E class: the
by the axes and the curye=0 (normalization frontiex. As N be- ~ Cauchy-Lorentz ensemt,)le correspondsute1. An integer
comes large, the maximumallowed tends to 1. Lines correspond &= 1 produces _Students ensembleee Refs[16,17 and
to families of ensembles having the same power-law tdlseled ~ references therein; see also Ref2]).

by w). Now, we analyze the limiN—o while keepingu>0
fixed, i.e., we move upwards along the curves of Fig. 1. As in
the caseq<<1, examined before, there is a limiting distribu-
N3s N3
p(s;N,r) = exp(— ) (30) tion. Some simple algebra leads to
27r? 4r?
giving the level-spacing distribution. Equatiof29) and(30) P(r, pu,N — o) o r‘(“f‘)exp(— Zirz) (35

are good approximations for both GOE and FTE distribu-
tions whenN is large[16].

We recall that ifg>1, the normalization conditiol5)
limits the value ofN to a finite domain. On the other hand
the caseq<1 does not present such a problem. So, we a
lyze each case separately.

Only when u—o0, P tends to the delta functioB2), and
GOE is recovered. For finitg the width of P(r) is at least
' O(1). In any case, the average of a given GOE distribution
N&ith P(r) gives the corresponding qOE distributipria Eq.
(26) with <f(H)>FTE~<f(H)>GOE! when N%OO] Let us first
consider the density of states. Inserting E@8) and (35)

A. Ensembles withq<1 into (26), we obtain
Except for providing an energy scale,plays no special o [4r2 — N&2
role. From now on, without loss of generality, we set1. If ple; ) f dr\—exp<— ﬂ) (36)
desired,o can be restored at any time by dimensional analy- \Ne/2 rits 2r?

sis. o )
WhenN — o (q fixed) the radial distribution of qOE tends This integral cannot be expressed in terms of elementary
functions. However, some information can be extracted ana-

to
lytically. Settinge=0 one obtains the gOE density of states
P(r;q,N) o 191 — 2o, (31)  at the center of the band
limited to the domain &r<1. Asd grows, the distribution N32T[(u+1)/2] [2
is squeezed against1, being concentrated in a small re- p(O;M):—W —. (37)
gion belowr=1, of width O(1/d)=0(1/N?). It can be veri- ™ [u/2] M

fied that both the level densit®9) and the spacing distribu- The behavior for large can be easily recognized by making

tion (30), when considered as functions of have widths  the change of variablesr 2 /Nez in (36), which leads to
which areO(1). Thus, the radial distribution is much nar-
VZ-1 (_ 2u

rower and we can safely approximate
3 eXP( -2 (39
P(r;q<1,N—ow)=48r-1). (32 z €

We conclude that, wheig<1 and N—c, the ensembles Evidently the tails vanish as 1*#)_This is also the behavior
qOE tend to the GORas far as it concerns the distributions observed by Cizeau and Bouchaud in their “Lévy en-
being studied, namely Eq&7) and(28)]. sembles” of matrices having independent entries distributed
according to the same law of E¢33) [11]. We note, how-
ever, that the analogies cannot be pushed further because our
ensembles are rotationally invariant and Lévy ensembles are

Whenqg>1 the possible ensembles are restricted to a renot (the ensembles of Refl11] belong to the so-called
gion in the planey—N that gets thinner ad— oo (see Fig. 1 a-symmetric clas$16]; see also Refl23)).

ple;pm) = 8_(W)f dz
1

B. Ensembles withg>1
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The calculation of the spacing distribution proceeds as
before. We have to insert Eq&0) and (35) into (26). The
result is

. e w, N
p(s,,u)ocsfo drr» 3)exp{—?(1+ﬁ)]
(39

The dependence amican be easily isolated by a change of
variables, so we can write

32\ —(1+ul2)
p(s; ) S(l + E) : (40)
27T 0
or alternatively ¢
FIG. 2. Density of states in the ensembles g®@Brmalized to
p(s; ) = sexpy, (- as?), (4) 1) we compare histograms generated numericalts with the
where theoretical result of Eq(38) (curveg. Each histogram was gener-
ated from a set of f0matrices. We used the following values mof
wtd NG+ 2 0.5, 1.5, 2.5, 6.0. Densities with largeg’s have larger values at
s = 02 and a= An (42) £=0 and decay faster. In all casis40 ando=1. The dashed line

The function of Eq(40) [or Eq.(41)] is identicalin shape to
the exact level-spacing distribution of thex2 qOE having

corresponds to the GOE semicirgld — ).

be calculated using Eq€l7) and(18) with g=1. The radius

the sameu (see the Appendix Then, both distributions can of Hy is
be collapsed by a simple scaling of the arguments. This cu-
rious result constitutes a generalization of Wigner’s surmise
to qOE.
Remark.When analyzing spectral statistics it is usual to

ro=\tr HZ. (46)

normalize energies so that thilcal) average spacing is 1

(the spectrum is “unfolded’ This amounts to measuring en-

ergies in units of

ds sps). (43)

a=|
0

Note, however, that in gOE the first momentpg$) does not
exist for u<1. In these cases, instead df one may alter-
natively use the energy scale

o -1
[f ds s‘lp(s)} .
0

Due to level repulsion there is no singularitysst0, andA
always exists, thus representing a characteristic energy
gOE. It is close to the inverse of the level density:at0

2
mp(0;u)’

A= (44)

A= (45)
with p(0;w) given in (37).

IV. NUMERICAL RESULTS

When thought of as clouds iRY, via the map of Eq(10),

(ii) Choose a radius; randomly according to the radial prob-
ability distributionP(r4,q,o,N) of Eq. (12). (iii) DefineH,
as

M
Hl:HO_'
o

(47)

This is the recipe we followed for constructing qOE matri-

ces.(If, instead of being a random variable, is fixed, we

obtain a matrix belonging to FTEThe only difficulty is to

devise the random number generator, especially when

has very long tails. For this purpose we used a combination

of the rejection methodand thetransformation methadas
xplained in Ref[24].

In Fig. 2 we show histograms representing densities of
states obtained from diagonalization of qOE matrices. It is
clear that they are very well described by the form{@8),
which was evaluated by direct numerical integration.

The statistics of level spacings is exhibited in Fig. 3. His-
tograms were obtained by binning data fron® Ifatrices.
Each matrix contributed, with the “central” spacing between
levels ey, andeyp.1- The analytical curves are tleedistri-
butions of Eq.(40). Again, the agreement between theory

both ensembles qOE and GOE are spherically symmetri@nd simulations is satisfactory. The valuesuoivere chosen
This means that qOE can be constructed just by rescaling thie accordance with the following criterion. Wher=0.5 all

radii of all points in the GOE cloudl16,17. Thus, the con- integer moments diverge. Fer=1.5 (1w=2.5 the first(sec-
struction of a qOE matrid ; (with parameters], o, N) can ~ ond moment exists but higher ones diverge. The case

be done in three stepg) Construct a GOE matrikly of size  =6.0 is intended to represent an ensemble qOE approaching
NX N. In this case matrix elements are independent and caGOE.
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08 ———rt————-t plicitly used the fact that individual large qOE matrices have
GOE statistics. This implies that qOE et ergodic(if u is
finite). In random matrix theory, nonergodicity is considered
to be a drawback because, it is argued, predictiensemble
averagep are compared with data obtained from a single
system. We do not object to this reasoning, but just mention
that in some cases empirical data are indeed extracted from
ensembles of Hamiltoniar27,2§.

p(s';u)
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FIG. 3. Level-spacing distribution in the ensembles qOE. We
compare histograms generated numericédigty with the theoret-
ical result of Eq(_40) (curves. Ea(?h histogram was gene_rated from Here, we apply(26) to the level-spacing distribution in
a set of 16 matrices, each mat.rlx gontrlbgtlng one pair of levels. gOE with N=2. We want to calculate
We used the same values mfas in Fig. 1. Distributions with larger
w's have higher maxima and decay faster. In all cadestO and p(s;q,0) = (d (g, ~ €1)(H) — ShqoE, (A1)
o=1. Spacings are measured in units ofp@®,u), i.e., s
=sp(0, ) [see Eq(37)].

APPENDIX: GENERALIZED WIGNER’S SURMISE

whereg; <&, are the eigenvalues &f. First, we neeg(s;r)
for FTE. This is a known resultl7]

V. CONCLUSIONS IS 1
. . . . pisiN === (A2)
This paper explores the possibility of using a modified V2r\2r2-¢?

sembles characterized by exponential laws, the power-la%oédrlggi;?(\ig)i’ ﬁisé?’(gés ()Et;igev?/im/ gxzra\?\;gggﬁz)vv\\,”iﬂe
entropy of Eq.(4) naturally produces ensembles with long- g 4ok, £4. T

tailed distributions(e.g., the so-calledy Gaussiang13]). result for the case>1
These ensemble&jOE) recover the Cauchy-Lorentz and p(s;q,0) = sexpy (= \'s%), (A3)
Student’s ones for special choices of the parameters.

Of course, the same families of ensembles can also b&here

maximum entropy method to construct random matrix €NYif the argument of the root is positive, zero othervyigc-
sembles. Whereas the usual logarithmic entropy leads to e

obtained from, say, the standard maximum entropy approach, 1+q

but at the expense of introducing a complicated constraint. A q’'= 3-g’ (A4)
similar situation arises in the maximum entropy approach to -q

anomalous diffusion, where one can choose between an uand

appealing constraint[25] and a nonextensive entropy

[18,27. By sweeping the parametey, one switches from " 3-9 (A5)
sub- to superdiffusive regimeg=1 giving normal diffusion 40%(5/13-q)°

[18,21. . , , .
In the present case, the entropic indggontrols the con- Equation(A3) plays the role of Wigner’s conjecture for qOE.

finement, allowing access to different universality cIassesI.tf'Sl‘Emoﬁ1 uﬁ_ethI to r?tv\{nteéAS) in terms of the parametgr
The anomalies we found can be associated with an effect ¢t q.(14). The resultis

soft- (or weak confinement. However, the confining poten- 32\ ~(1+u/2)

tial in gOE is many-body, as opposed to the more common p(s;q,0) =« 5(1 +2—> : (AB)
single-particle confinement in standard random matrix theo- K

ries. In Sec. Il this expression is compared with the spacing dis-

Gaussian ensembles agggodic[26]. In Sec. lll we ex- tribution for the largeN case[Eq. (40)].
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